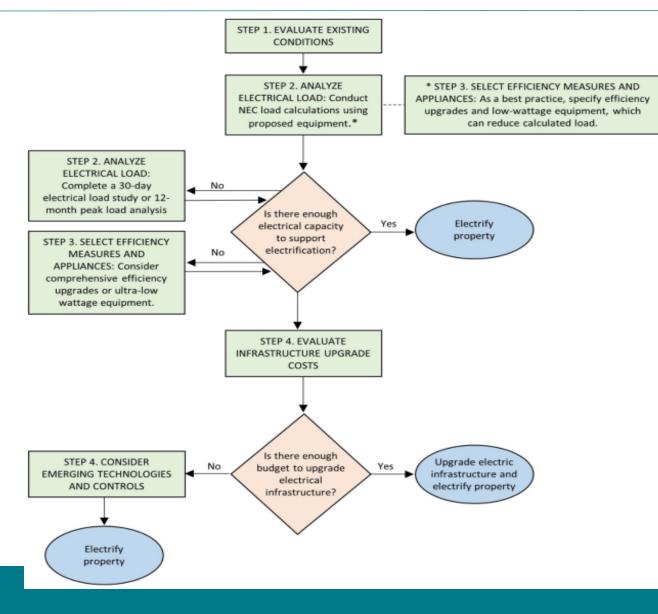
Accelerating Electrification of California's Multifamily Buildings POLICY CONSIDERATIONS AND TECHNICAL GUIDELINES

STOPWASTE at home • at work • at school

Accelerating Electrification of CA's Multifamily Buildings

Technical Guidelines

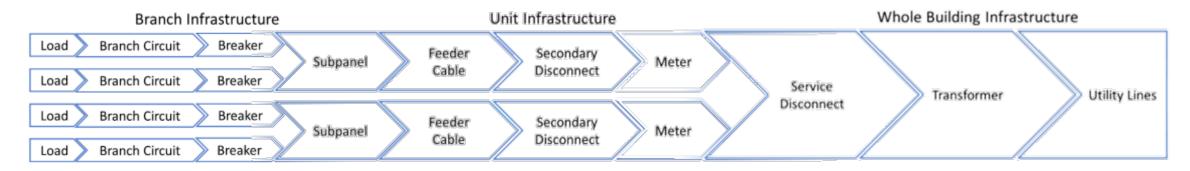
June 8, 2022


ASSOCIATION FOR ENERGY AFFORDABILITY (AEA)

May 2021

Part 2 – Technical Considerations for the Electrification of Existing MF Bldgs

- Electricity fundamentals
- Cost-Efficient Electrification Overview (Decision Tree)
- 4 step process



STOPWASTE

Step 1 – Evaluate Existing Conditions

- Typical existing infrastructure (80/20 rule)
- Planned modernization
- Data collection, usable 3pg form:
 - Main panel and subpanel capacities
 - Equipment specifications
 - Wiring types
- Identifying elect. infrastructure

Dat	a Collection	Data Applications
APA	ARTMENT AND COMMON AREA LOADS	
	Wall construction: inches of insulation □No cavity/difficult access (brick, lath+plaster, etc.)*	
	Ceiling construction: inches of insulation □Has accessible cavity*	
	Floor: inches of insulation 🗆 Slab	
	Window glazing: □Single pane □Dual pane	
	Window frame: 🗆 Metal 🗆 Wood 🗆 Vinyl or fiberglass	
	Primary lighting type: □Incandescent □Fluorescent □LED (1) Do residents report tripping electrical breakers?	 Extra capacity may be gained by upgrading to LEDs if lights are not already efficient. If certain breakers frequently trip, their circuits
	□Yes □No If so, when?	may be overloaded or have safety issues. (3) Knowing which appliances use gas, and how much they use, can help inform calculations of
	Range: 🗆 Gas 🗆 Electric	how much electricity use will be added once
	Water heating BTU output:	these appliances are converted to electric. Keep in mind, existing gas appliances tend to be
	□Gas □Electric □In unit □Central	oversized, so the best practice is to resize when
	Heating type:	installing new electrical appliances.
	□Gas □Electric □Hydronic □Steam □Ducted	instanting there executed appliances.
	Heating output:	
	Cooling output: (3)	

Figure 8. Electrical Infrastructure Sequence

Helpful "real-world" photos throughout

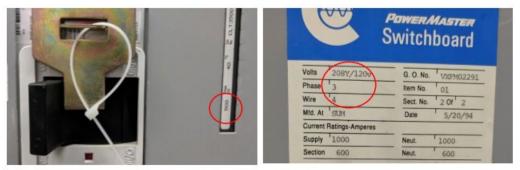


Figure 20. Service Disconnect and Switchboard of a Large Multifamily Building

Figure 23. Pole-Mounted Transformer

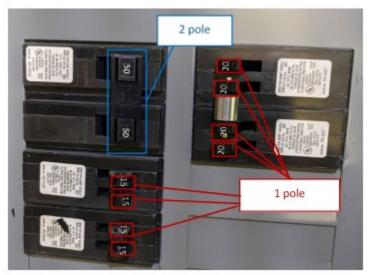


Figure 11. Panel Showing Single- and Dual-Pole Breakers

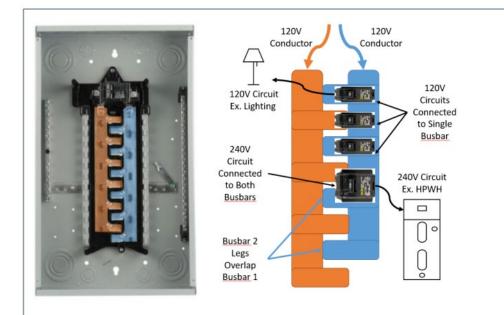


Figure 14. Photograph and Diagram of Inside of a Subpanel (Square D, 2020) (Square D, 2020) (Saltzman) (Murray, 2020)

Step 2 – Analyze Electrical Load

- NEC deemed electrical load calculation, 2 examples fully detailed
- NEC electrical load monitoring study
- References in works cited and appendix

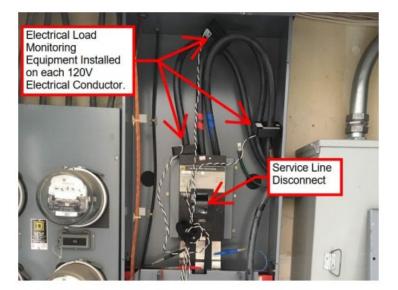


Figure 26. Load Monitoring Equipment

Residentia	I Dwelling Unit Load Calcu	lation - NEC Section 220			
Dwelling Unit Area 800 ft ²					Notes for Example A
Step 1 - General Loads Per NEC	220.16				
Desmad Lisbeiss Iss		0.00	2 400		Step 1: General Loads are required by the NEC. These are intended to serve small
Deemed Lighting Loa	ad Value: 3.0 Volt Amps Quantity	(VA) per square toot =	2,400	VA	plug-in appliances throughout the dwelling unit.
Kitchen Appliance Ci		1,500 =	3,000	VA	unit.
Laundry Appliance Ci		1,500 =	1,500		
					Demand factors: For each load type,
Demand factors:					demand factors are applied to help simulate the coincidence that all loads will
First 3 KVA have a de	mand factor of 100%		3,000	VA	be on at the same time. Different load
	a demand factor of 35%		3,900		types have different demand factors
≥ 120 KVA have a den	nand factor of 25%		-	VA	deemed by the NEC.
		Total =	4,365	VA	
Step 2 - HVAC Loads Per NEC 22	0.83b				Step 2: HVAC Loads have different demand
Added Load from Spa	ace				factors and must be calculated separately
Heating Electrificatio	Quantity	Appliance Name Plate VA			from general loads. For all NEC load calculations, the calculation must represent
3-Ton Mini-split Hea Heating and Cooling		+ 4,000 =	4,000	VA	the final conditions. In this example, the 3-
Treating and cooring				_	ton heat pump replaces the existing
Demand factors:					furnace during electrification.
	ooling (whichever is larg ces Fixed in Place 100% l	er) has a demand factor of 100	4,000	VA VA	
	s Fixed in Place 75% NP	-		VA	
		Total =	4,000	VA	
Step 3 - Electric Cooking Loads F	Per NEC 220.55				Step 3: Electric Cooking also has different demand factors and must be calculated
					separately from HVAC Loads and General
	Quantity	Deemed VA Rating			Loads.
Electric Cooking Range ar		12,000 =	12,000	VA	
Demand factors:					
Demand factors: Electric Cooking Appliand	ce has a demand factor o		12,000		Step 4: Sum all loads after demand factors
Electric Cooking Appliand		Total =	12,000		Step 4: Sum all loads after demand factors have been applied to determine the total
Electric Cooking Appliance		Total =	12,000		have been applied to determine the total volt amps for the dwelling unit. Divide this
Electric Cooking Appliant	tep 1 through 3 to Calc Total Existing Vol	Total = culate Required Volt Amps an It Amps for the Dwelling Unit	12,000	VA	have been applied to determine the total volt amps for the dwelling unit. Divide this number by the volt ratings of the
Electric Cooking Appliant	tep 1 through 3 to Calc Total Existing Vol	Total = sulate Required Volt Amps an It Amps for the Dwelling Unit the Dwelling Unit with the 3-	12,000 d Amps	VA VA	have been applied to determine the total volt amps for the dwelling unit. Divide this number by the volt ratings of the panel/secondary disconnect to determine
Electric Cooking Appliant	tep 1 through 3 to Calc Total Existing Vo Proposed Volt Amps for	Total = culate Required Volt Amps an It Amps for the Dwelling Unit	12,000 d Amps 16,365	VA VA VA	have been applied to determine the total volt amps for the dwelling unit. Divide this number by the volt ratings of the panel/secondary disconnect to determine required amps. In this example, it is being
Electric Cooking Appliant	tep 1 through 3 to Calc Total Existing Vo Proposed Volt Amps for Single Phase	Total = ulate Required Volt Amps an it Amps for the Dwelling Unit the Dwelling Unit with the 3- Ton Mini-split Heat Pump	12,000 d Amps 16,365 20,365	VA VA VA A	have been applied to determine the total volt amps for the dwelling unit. Divide this number by the volt ratings of the panel/secondary disconnect to determine
Electric Cooking Appliant	tep 1 through 3 to Calc Total Existing Vo Proposed Volt Amps for Single Phase	Total = ulate Required Volt Amps an It Amps for the Dwelling Unit the Dwelling Unit with the 3- Ton Mini-split Heat Pump Amp Capacity Requirements	12,000 dd Amps 16,365 20,365 84.85	VA VA VA A	have been applied to determine the total volt amps for the dwelling unit. Divide this number by the volt ratings of the panel/secondary disconnect to determine required amps. In this example, it is being

Step 3 – Select Efficiency Measures and Appliances

- HVAC efficiency and equipment
- Domestic Hot Water systems
- Lighting, cooking, appliances + misc. equipment
- Includes system-specific considerations: climate, electrical requirements, equipment selection, and efficiency opps.

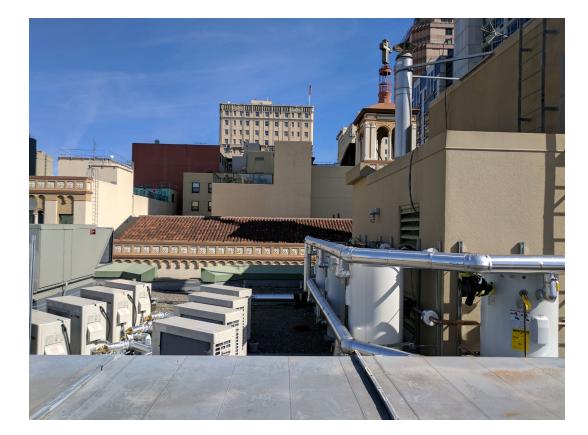
	Existing 3 Ton Split AC + 3 Ton Natural Gas Fueled Furnace	Froposed 2 Ton Mini-split Inverter Driven Heat Pump with Indoor Air Handler	Smaller proposed heat pumps can be installed when envelope efficiency measures are in the scope of work
	Existing	Proposed	Capacity & Infrastructure Savings with Smaller Proposed Heat Pump
Cooling Efficiency (SEER)	13.0	18.0	-
Heating Efficiency	80%	285%	
Cooling Capacity (Btu/hr)	36,000	28,000	-
Heating Capacity (Btu/hr)	32,000	24,000	-
Watts (VA)	5,610	1,910	+ 3,700
Breaker Size	 240V 30 Amp Breaker (Outdoor Unit) 120V 15 Amp Breaker (Indoor Unit) 	240V 20 Amp	+ 120V 25 Amp

Figure 30. 1.5 to 3 Ton Split AC Replaced with Heat Pump with Efficiency Measures Applied

Images and data: (Goodman, 2020) (Goodman, 2020) (Mitsubishi Electric, 2020)

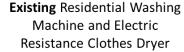
HVAC

- HVAC Efficiency and Equipment
- Design Considerations
 - Envelope Penetrations (Packaged Systems)
 - Location of Outdoor Compressor (Split Systems)
 - Refrigerant Line sets (Split Systems)
 - Cold Ambient Performance
 - Defrost Cycle



DHW

- Domestic Hot Water Efficiency and Product Selection
- Residential & Commercial HPWH
 Considerations
 - Electrical Requirements
 - Equipment Location
 - Cold Ambient Temperature
 Performance



Lighting, cooking, appliances and misc. equipment

- Efficiency Opportunities
 - Lighting
 - Cooking
 - Laundry
 - Misc. Fan Efficiency and Pumps
- Electrification Opportunities
 - Cooking
 - Laundry
 - Pool/Spa Heaters

Proposed Residential Condensing Dryer/Washer Combination

	Existing	Proposed	Capacity & Infrastructure Savings		
Total Watts	5,700	1,200	+ 4,500		
Breaker	 240V 30 Amp (Dryer) 120V 15 Amp* (Washing Machine) 	120V 15 Amp*	+ 1 Single Pole Breaker Slot		

*These efficiency measures are typically not reflected in NEC calcs due to deemed electrical loads

Case Studies

ALMOND COURT

Wasco, CA

Owner:Self-Help EnterprisesYear built:1996Type:Low-rise multifamilySector:Affordable rentalUnits:36Size:45,000 sq. ft.Program participation: Low IncomeWeatherization Program (LIWP)

PROJECT SCOPE

- Heat pump water heaters
- High efficiency ducted heat pumps
- Ductwork sealed with Aeroseal
- Attic air sealed and insulated
- ENERGY STAR washing machines and refrigerators
- Dual-pane windows
- Comprehensive LED lighting upgrade
- Low-flow aerators and showerheads
- 110 kW solar PV system

LINK TO COMPLETE CASE STUDY:

https://camultifamilyenergyefficiency.org/case-studies/case-studies-almond-court/

Figure 1. Almond Court Case Study

	1m
11 IL	5
8	
	COLOCU

ENERGY AND COST SAVINGS

(Confirmed efficiency savings plus projected PV savings)

- 44% reduction in actual resident energy use (combined BTU savings)
- 18% cost savings in resident utility bills from energy efficiency and electrification measures
- \$830 average bill savings per unit
- 72% total site savings on BTU basis
- 91 metric tons CO2 reduced

Property Name	Combined Site BTU Savings	Electricity Savings	Gas Savings	Combined \$ Savings	GHG Savings
205 Jones	40%	-82%	48%	31%	34%
Padre	37%	-6%	53%	27%	30%
Marlton Manor	27%	4%	35%	49%	23%
ArdenAire	64%	-33%	89%	36%	51%
Cascade Village	50%	-84%	66%	25%	41%
North Park	32%	18%	45%	23%	28%
Average	42%	-31%	56%	32%	35%

Step 4 – Evaluate Upgrade Cost and Consider Emerging Alternatives

- Infrastructure upgrade costs
- Emerging alternatives to upgrading electrical infrastructure, current and future use cases
 - Smart panels and splitters
 - EV dynamic load management

Table 10. Estimate	d Costs for Electrical	Infrastructure Upgrades
--------------------	------------------------	-------------------------

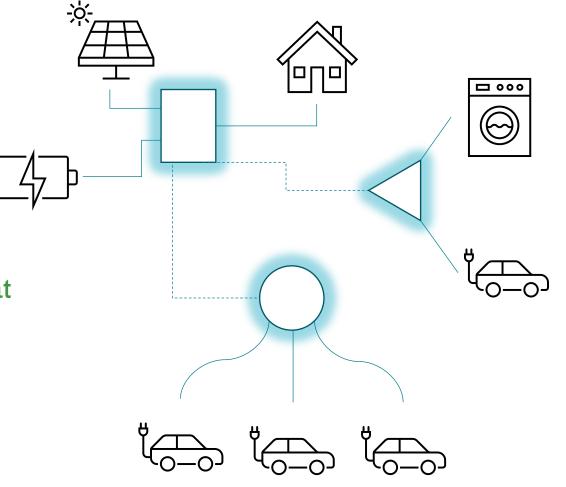
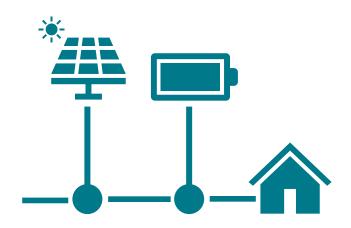

Electrical Infrastructure Upgrades	Cost			
Add circuits for a new electric appliance	\$500-\$2,000			
Upgrade subpanels	\$1,000-\$7,000			
Replace disconnects at meter bank	\$1,000-\$3,000			
Upsize feeder cable	\$1,000-\$10,000			
Convert from single to three phase	\$10,000–\$100,000 (depends on building size)			

Table 11. Estimated Costs for Utility Service Upgrades

Utility Service Upgrades	Cost
Service line disconnect	\$500-\$5,000
Overhead service connection	\$3,000-\$10,000
Underground service connection	\$10,000-\$50,000
Pole-mount transformer	\$3,000-\$5,000
Pad-mount transformer	\$10,000-\$30,000
Subsurface transformer	\$40,000-\$80,000

Emerging Alternatives

- Smart Panels
 - Future use cases
 - Battery control
 - Load shifting
- Smart Splitters
 - Future use cases
- EV dynamic load management
- Dialogue with local code enforcement



Solar PV

• Impact of solar PV on electrification

- Tie in with electrical infrastructure upgrades
- Types of infrastructure connections
- Metering types
- Resilience*
 - Load shifting
 - Power outage/shutoff
 - NZE use potential
 - Hedge against utility rate escalation

*Resilience benefits of PV and batteries are mentioned in Part 1. However, resilience strategies and benefits expand well beyond those addressed in this report.

Appendix A – Product Guides

Interior Wall-Mounted Fan Coil

Description Dimension (in)

(HxWxD) Ref. Type Ambient Temp.

Range (H/C) (F) Power (W) Max Amps (A)

Heating Cap. (BTU/h) Cooling Cap.

(BTU/h) Heating (COP) Cooling (COP)

- Retrofit equipment product guide
 - HPWHs
 - Mini-splits
 - Packaged terminal HPs
- Emerging alternatives product guide
 - Smart panels
 - Smart splitters
 - EV load management

		Table 14. Ductle	ss Mini-Split Hea	nt Pumps (12	0 V)					
		(F	edwood Energy, 202	D)						
	GE Caliber Series AS12CRA	LG ⁱ Mega (115v) LS-120HXV	Mitsubishi MZ-JP12WA	Gree LIV (09,12) HP115V1B		Haier				
	1 Indoor Fan Coil	1 Indoor Fan Coil	1 Indoor Fan Coil	1 Indoor Fa Coil	in 1 Indoor Fai Coil	n 1 Indoor Fan Coil				
-	21 x 31 x 10	19 x 28 x 10	22 x 32 x 11	33 x 21 x 1		28 x 35 x 14				
_	R410a	R410a	R410a	R410a	T.	able 12. Individual	(Per Apartment) H	leat Pump Water	Heaters (240 V)	
	-4 - 115	14 – 65 / 14 – 118	-4 - 115	0 - 115	1.	ere in murridua	(Redwood Energ	-		
_		1,140 - 1,090	800 - 1,300	1,955	Manufacturer	Eco2 Systems	Rheem	AO Smith	Bradford	Steilbel Eltron
_		10.4	11.8	17	and Product		Prestige Hybrid	Voltex Hybrid	White	Accelera
	12,000	13,000	12,200	9,600; 12,5	Image				AeroTherm	
	12,000	12,000	12,000	9,000; 12,0		-				
_	2.92	2.6	2.9	3.3 4.67		× 1	-		= 🖥 🗝	
					Description	Large Volume	Hybrid: Heat	Hybrid: Heat	Hybrid: Heat	Hybrid: Heat
					Description	Cold Climate CO2 Refrigerant	Pump and Resistance	Pump and Resistance	Pump and Resistance	Pump and Resistance
					Gallons	43, 83, 119	40, 50, 65, 80	50, 66, 80	50, 80	58, 80
					Voltage (V)	208/230	208/240	208/240	208/240	220/240
					Dimension (in)	27.5H x 35W x 11D	74H x 24Diam.	69H x 27Diam.	71H x 25Diam.	60H x 27Diam.
					Ref. Type	R744 (CO2)	R134a	R134a	R134a	R134a
					Ambient Temp. Range (F)	-30 – 110 (cold climate)	37 – 145	45 - 109	35 – 120	42 - 108 / 6 - 42
					Power (W)		45.00	4,500	550 - 4,500	650 - 1500
					Max Amps (A) Heating (BTU/h)	13 15,400	15 – 30 4,200	- 30	- 30	15 5,800
					Heating (COP)	5.0	-	-	-	-
					Energy Factor	3.09 - 3.84	3.55 - 3.70	3.06 - 3.61	2.40 - 3.39	3.05 - 3.39

Appendix B – NEC Deemed Load Calculations

- Step-by-step calculation process overview
- Load calc references
- Example dwelling unit load calc worksheet
- Example calcs: laundry room and whole building

Whole Building Res	idential Load Ca	lculation -	NEC Section 220			
Dwelling Unit Area 1,234 ft ²						
Number of Dwelling Units 4						
Step 1 -Lighting, Small Appliance and Gene	eral Loads Per N	NEC 220.8	3B			
Deemed Lighting Load Value: 3.0 Volt Amps	(VA) per square f	foot		=	3,703	VA
	Quantity Po	er Unit	NEC Deemed VA Value			
Small Appliance Circuits (2 pe		2	1,500	=	3,000	VA
Laundry Circuits (1 pe	er apartment)	1	1,500	=	1,500	VA
Garbage disposals (1 pe	er apartment)	1	1,200	=	1,200	VA
			Appliance VA Value			
Electric Cooking Randge and Sto	ve Top (1 per	1	7,680	=	7,680	VA
Demand factors:						
					0.077	
First 8 KVA have a demand factor of 100% ≥ 8 KVA have a demand factor of 40%					8,000 3,633	
			Total	=	11,633	
Step 2 - Sum up HVAC Loads Per Apartmer	nt					
	Quantity Po	er Unit	Appliance VA Value			
New Space Conditioning Heat Pumps (1 pe	r apartment)	1	9,000	=	9,000	VA
Step 3 - Multiply Unit Electrical Loads by N	umber of Units	for Each	Unit Type			
	Dwelling Unit Qu		Dwelling Unit VA	Tota	Unit VA	
Calculated Unit E	lectrical Load	4	20,633	=	82,532	VA
Step 4 - Apply Whole Building Demand Fac	tors per NEC Ta	able 220.	,		- ,	
Demand factors:						
Total VA for Property has a demand factor o	f 45% because th	e property	has 3-5 dwelling units		37,140	VA
			Total	=	37,140	VA
	Total Existing Vo	lt Amps fo	r the Mulitfamily Building		33,090	VA
Total Proposed Volt Amps for the Multifami	ly Puilding with N	low Space	Conditioning Host Dumas		27 1 4 0	
rotar Froposed voit Amps for the Multifami	iy bullullig with N	iew space	conditioning near Pumps		37,140	VA
	Single	Phase Am	p Capacity Requirements		154.75	Α
S	ervice Line Disco	nnect and	Feeder Wire Amp Rating		200.00	Α

Appendix C – Flagged Electrical Infrastructure

- Existing building conditions that directly impact electrification
- Explanation of each condition and why it matters
- Actions to address

Appendix C: Flagged Electrical Infrastructure

In the Data Collection Template (Figure 7), electrical infrastructure conditions that may increase a project's complexity are flagged with an asterisk. This table provides more information about those conditions and the relative ease or difficulty they present for electrification.

Key to electrification complexity: O Relatively easy O Standard complexity O Difficult

Flagged Electrical Infrastructure	Description	Action
APARTMENT UNIT Brick or lath and plaster wall assemblies and ceiling assemblies with no cavities	S, COMMON SPACES Wall and ceiling assemblies that are solid or that have a cavity but are difficult to open and repair (such as lath and plaster or walls and ceilings with decorative finishes) make it difficult to conceal new circuits added during electrification.	 Wall and ceiling assemblies with inaccessible cavities require new circuits to be surface mounted or run through attics and crawlspaces. This makes adding new circuits easier but less aesthetically pleasing. Walls and ceilings with cavities give the option of surface mounting, attic or crawlspace runs or through wall or ceiling

Thank you!

Jack Aitchison Manager, Engineering jaitchison@aea.us.org 510-256-5890

Report available here:

https://www.stopwaste.org/accelerating-electrification-ofcalifornia%E2%80%99s-multifamily-buildings

